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- ABSTRACT

In early 2001, AFRL and NAVAIR issued a PRDA
requesting proposals to develop an intelligent controller
(IC) for unmanned combat air vehicles. Two key
requirements of the IC were (1) a learning approach
that could go beyond current adaptive controllers and

“remember” what it had learned across flight conditions

and (2) a reconfigurable path planner that accounted for
changes in the inner-loop behavior and generated near-
optimal trajectories in real time. This paper presents an
summary of the resulting IC program and some initial
technical results. Key features of the IC architecture
are (a) a direct-adaptive backstepping controller that
uses spatially-local models of the vehicle dynamics, (b)
a provably-stable approach to learning the structure of
the underlying vehicle models online, and (c) a finite-
automaton-based path planning approach that computes
an near-optimal trajectories using pre-computed
maneuver and trim primitives. The IC architecture not
only provides on-line inner- and outer-loop
reconfiguration for unforeseen failures or damage, but it
can also reduce the cost of developing new control
systems. To demonstrate this assertion, the IC
algorithms were developed using a medium-fidelity
UCAYV simulation and subsequently evaluated using a
high-fidelity nonlinear simulation that was similar in
nature but significantly different in detail to the
development simulation.

INTRODUCTION

Uninhabited air vehicles (UAVs) and uninhabited
combat air vehicles (UCAVs) will play an increasingly
important role in future military operations; however,
there are a number of significant challenges associated
with the development of an advanced control system for
these vehicles.
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First, because the UAV will be exploited to perform
tasks that would otherwise risk the safety of flight
crews of manned aircraft, there is an increased
probability of damage to the vehicle might resulting
from extreme operating conditions, hostile actions, etc.
This underscores the need for a reliable system design
that can accommodate significant changes in system

" behavior from a wide variety of sources. . The
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requirement that the UAV must operate in close
proximity to humans further emphasizes the need for a
reliable system design.

Second, because many UAV systems are expected to
cost less than manned systems, it is unlikely that
developers will have the resources to collect extensive
wind-tunnel and flight-test data of the caliber typically
found during manned flight vehicle development.
Thus, the model available for UAV development will
necessarily contain larger uncertainties, which compels
the controls engineer to compromise performance in
favor of robustness.

Finally, because there is not always a human in the
loop, the controller must be augmented with a very
sophisticated autopilot design that not only cruises,
climbs, and changes heading, but is capable of
performing complex and agile maneuvers, that would
normally be performed by a pilot, without the risk of
losing control of the vehicle.

In recent years, there have been considerable advances
made in developing control methods that enhance fault-
tolerance and survivability of fixed-wing manned
aircraft.

A number of researchers have developed reconfigurable
control systems for a variety of flight vehicles with
promising results [1,2,3,4,5]. Many of these results
have been demonstrated in high-fidelity simulations;
the past decade or so has also witnessed four significant
flight demonstrations of reconfigurable control. The
first of these, the Self-Repairing Flight Control System
(SRFCS) [6], culminated in a series of F-15 flight tests
that demonstrated the ability of the controller to isolate
individual control surface failures and subsequently
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reconfigure the aircraft. The Self-Designing Controller
(SDC), funded by AFOSR and led by BAI was another
milestone in reconfigurable control [1]. Here, an on-
line control design was used to avoid having to make a
priori assumptions about the nature of potential
failures. To capitalize on the SDC results and further
advance reconfigurable controls technology, the Air
Force Research Laboratory (AFRL) initiated the
RESTORE program for tailless fighter aircraft [5,7].
Here, two designs were evaluated; a significant result of
[7] — and another landmark in reconfigurable control
research — was successful flight testing of a direct-
adaptive neural network reconfiguration architecture on
X-36. Finally, NASA's F-15 Intelligent Flight Control
System (IFCS) is the most recent reconfigurable control
program to involve flight tests.

Much of the prior work in reconfigurable control has
focused on modifying inner-loop controllers to achieve,
to the extent possible, the desired response
characteristics. However, there has been some work to
address reconfiguration at the level of guidance and
trajectory loops.  Of specific relevance to current
program are efforts that have investigated on-line
computation of optimal trajectories and the
modification of inner-loop reference commands. The
latter is particularly important when inner-loop
reconfiguration alone cannot recover nominal
performance, and the outer loop (pilot or autopilot)
must modify its behavior to ensure safe performance.
In [8], the authors leveraged experience in rotorcraft
pilot cueing to develop algorithms and methods that
provided pilots with physical cues as to the limitations
of the inner-loop controller via force feedback on the
control inceptor(s) and demonstrated the ability to
mitigate PIO using such a system. In [9], the predictive
nature of a model-predictive-control algorithm was
used to compute a modified reference command to
match the performance capabilities of the aircraft. In
[10], an adaptive command gradient was used to ensure
that the reference command provided to the controller
was realizable. Key outer-loop and closed inner-loop
characteristics of a failed autonomous reusable launch
vehicle (RLV) were identified on-line and used to
ensure the stability of the existing guidance loop as well
as to generate, in real time, new optimal trajectories that
would result in a safe vehicle landing [11). This work
is particularly relevant to the proposed effort because
the RLV has minimal inner-loop control redundancy
and, so, the guidance and autopilot loops were required
to adapt intelligently to handle failures.

The opportunity exists to extend these reconfigurable
methods to address the following unique controls
challenge posed by UAV systems:

.2,

How does one design .an integrated
autopilot and inner-loop controller to
maximize performance and reliability
given the uncertain nature of the vehicle
models available for controller synthesis?

The answer lies in (a) extending the existing state of the
art in trajectory (re-)computation and reconfigurable
control designs to incorporate on-line learning that
remembers what is learned about the vehicle behavior,
and (b) developing a modular system that is robust to
adverse interactions between the autopilot and inner-
loop controller.

THE IC PROGRAM

AND SYSTEM ARCHITECTURE
To address these two research issues of inner-loop

learning and outer-loop reconfiguration, AFRL and
NavAir issued a PRDA in 2001 entitled Intelligent
Control that sought “a combination of methods which
include learning to recognize and remember spatial
dependencies, adaptation to address abrupt changes,
and optimization to determine optimal trajectories for
specific tasks or mission requirements.”

In response to this PRDA, Barron Associates, Inc.
(BAI) proposed a program with the following technical
objectives:

Table 1. Intelligent Control (1C) Technical

Objectives

IC performance will improve over time as it leamns
Long- based on observed behavior of the UAV. This will
Term significantly reduce the need to develop expensive,

Learning  high-fidelity math models during the controller
design process.
Rapid The IC will rapidly adapt to any sudden unforeseen
change in vehicle dynamics due to failures, stores
Adaptation release, etc.
The IC will interact with the mission planner by
On-Line receiving a request to follow a trajectory or fly to a
Trajectory  destination and return a feasible trajectory that is as
Reshaping close to the desired or optimal trajectory as
possible given the current capabilities of the UAV.
The IC algorithms will be modular,
Implement CSOMPutationally feasible, and have stability proofs
-agle and that allow them to be implemented, verified, and
Verifiable validated. These algorithms will be transitioned to
NGC and other airframers for use in CMUS and
future production UAVs,
The proposed IC algorithms can be developed with
Reduced lower cost medium fidelity simulations, and they
Develop- 2N be reused on new or derivative nirfr.amm more
ment Costs  "62dily by releaming the control in a new

simulation, thus reducing the amount of analyst
involvement required to fine-tune the controller.

American Institute of Aeronautics and Astronautics
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BAI believed that its background in indirect-adaptive
receding-horizon optimal control [1,12], adaptive
backstepping  control  [13,14], structure-learning
modeling [15], reinforcement learning [16], and
guidance and trajectory adaptation [11] provided a good
foundation for addressing the requirements of the IC
PRDA; however, it was deemed essential to augment
these skills with those of additional team members from
government, industry, and academia. Figure 1 shows
the team members and the technology they contributed
to this project.

Fechmieal
Reponts

Figure 1: Intelligent Control Team Contributions

Dr. Jay Farrell (UC Riverside) provided methods that
augmented adaptation with spatially local learning to
give the controller with “memory.” Additionally, these
methods employ a Lyaponuv-based learning rule that
ensures the stability of the overall closed-loop tracking
system. Working closely with UCR and BAI, Marios
Polycarpou (UC), worked on anti-windup approaches
that could be integrated with the learning controller and
preserve the stability under effector saturation. Dr.
Stefan Schaal (USC) provided expertise in self-
organizing approaches that could learn both parameters
and the structure of a vehicle model online. Dr. Eric
Feron (MIT) provided finite-automaton-based trajectory
reconfiguration that computed an optimal path using
pre-computed maneuver and trim primitives. Table 2
summarizes the benefits of these technologies.

In addition to the academic input, it was important to
have the input of researchers actually involved in the
design of UAV systems for real-world missions.
Northrop Grumman Corporation (NGC) filled this need
by providing expertise in identifying mission scenarios
that would challenge the IC architecture, providing key
insights into the V&V issues of this type of system,
providing a high-fidelity UCAV simulation and ‘an
associated baseline (non-reconfigurable) controller, and
reviewing and commenting on the control design at
each step of the process to ensure that the overall team

received the benefits of NGC’s extensive “real-world”
experience.

Table 2. 1C Technical Approach

Both the inner-loop and outer-loop algorithms
incorporate memory using a spatially-local
nonparametric modeling approach (LWL)

M:::::I’; via originally developed by the machine leaming
Weight:'d and robotics community. LWL learns the
Learning structure anq weights ofa modgl of the system

(LWL) dynamics in real time with guaranteed
convergence properties. The IC represents the
first time LWL has been applied in the context
of direct-adaptive learning control.

. Because of the spatially-local nature of LWL,
the number of non-zero basis functions (and,
No hence, coefficients to be leamed) is quite small

Adaptation at any specific flight condition. Thus, the
/ Learni models are capable of adapting very rapidly to

arning :

Tradeoff sudden changes due to fallurgs, stores release,
etc. Moreover, once the vehicle has moved to
another flight condition, these dynamics are
retained for later use.

The IC architecture will employ a trajectory
reshaping algorithm based on MIT's hybrid

Novel automaton  approach. This  approach,

Outer-Loop  originally developed for DARPA's SEC
Approach  program, will be extended by applying it to

that Sixed-wing vehicles (as opposed to rotorcraft),

Accounts accounting for changing vehicle dynamics,

for and incorporating on-line non-real-time

Interactions learning of new optimal trajectories that

maximally utilize all of the available UAV
performance capabilities.
The IC architecture is designed to minimize

Accounts -adverse interacfions‘bt.:!ween the inper and

for Loop outer loops by identifying, remembering, and

accounting for system dynamics that might
give rise to such interactions, including
saturation nonlinearities.

Interactions

Both inner-loop and outer-loop algorithms
have stability guarantees comparable to those
associated with classical control design
methods.

Guaranteed
Stability

To compellingly demonstrate the above technical

_3-

objectives of the IC approach, the team employed a
novel strategy in which the algorithms were developed
initially using a medium-fidelity MATLAB simulation.
Final evaluation, however, was performed using the
high-fidelity uninhabited combat air vehicle (UCAV)
simulation provided by Northrop Grumman
Corporation (NGC). Not only did this simulation have
dynamics that are significantly different from those
used in the initial design, but it had two additional
features of interest: (1) because the NGC UCAV was
designed for stealth, it had a reduced effector set and
limited inner-loop reconfiguration options. Thus any
reconfigurable controller was likely to require outer-

American Institute of Aeronautics and Astronautics




loop learning and adaptation to maintain stability
during  unforeseen  changes in  dynamics;

(2) Because it contained a respectable baseline
controller developed over 1.5 man years using a

Tables 3 and 4 cite the sources of the aerodynamic
force and moment data used for BANTAM.

Table 4: Sources of Aerodynamic Force Data

classical design approach, it provided important Parameter Source
performance benchmarks for the missions and Cr DATCOM
maneuvers of interest. Key advantages highlighted by oS :“ @ TM 4640
. . wing 4 X
fheTpr?pc;sed demonstration approach are summarized Cro o (@, Buorted) ~—TM 4640
in Table 3. CLy coatter (@:Ospoiter) | WL TR-07-3059
Fable 3. 1C Demonstration Approach Cr, () HASC-95
Reduced Demonstrate that a suitably performing IC Cp, DATCOM
Development system could be developed, initially, using a Cp, (., 6) 0.133C;
Cost very low-cost, medium-fidelity simulation. - 0.0643 + 0.0217 (a — 16°)
P erform;llc: Demonstrate that, once the IC has Jearned the C.tana
Comparable (o gynamics of the high-fidelity UCAV, its
Con‘t:ﬂ ;or performance is comparable to that of a high- Cy, (a) TM 4640
Known Model quality classically-designed controller. Cy, (a) HASC-95
- Cy, TM 4640
Demonstrate that the IC approach, as it leamns
Improved the vehicle dynamics, can use more aggressive Table 5: A ic M ¢ Dat.
Performance control to achieve performance that approaches able 5: Sources of Acrodynamic Moment Data
with New the limits of the vehicle's abilities. This is in
Vehicle contrast to a conventional controller that, to Paiameter Source
Dynamics dea!l with large uncertainties, would have to be Cy, (a) HASC-95
very robust and conservative. C, (a) HASC-95
i od Demonstrate that, compared to the baseline Cle 1105 (@, 8apoiter) | TM 4‘?‘,43%3“-9;’3059
P :p rov controller, the IC approach can rapidly adapt le spoiter -97-305
wzm"F’“"l"'“ and maintain stability for significant set of
lures  failures, Crm, DATCOM
Demonstrate the benefits of an intelligent outer- CC'"“""" = ""3" (@) gg 420
Integrated loop that modifies reference trajectories and my g100 (€ Bapoiter) M 4640
Inner- and inner-loop commands to ensure stability and Cony epoiter (@ Bapoiter) WL-TR-97-3059
Outer-Loop model following even when sufficient control ', () HASC-95
Learning redundancy or authority does not exist to
achieve desired inner-loop performance. Co (@) HASCo5
np
Ch, (a) —Cp, /6 (strip theory)
Chs_g1ap (@, 84poiter) | TM 4640/WL-TR-97-3059
MEDIUM-FIDELITY SIMULATION C. WL-TR-07-3050

There are two vehicle models used in the IC program.
The first is a high-fidelity model of flying-wing UAV
provided by Northrop Grumman Corp. (NGC) and the
second is the Barron Associates Nonlinear Tailless
Aircraft Model (BANTAM). The latter is a medium-
fidelity model that resembles the NGC model in
configuration only, but was constructed completely
independently using public-release aerodynamics data
unrelated to NGC UAV model.

The primary source of aerodynamic data used in
BANTAM is NASA TM-4640, which is a wind-tunnel
test report on a series of flying wings. Both DATCOM
and HASC-95 were used to fill the gaps in TM-4640,
and WL-TR-97-3059 (ICE) was used to obtain data on
the spoilers and their interactions with the other control
effectors.

-4-

Figure 2: BANTAM Vehicle Configuration

The BANTAM simulation is based on a flying wing
configuration representative of UAVs proposed for

American Institute of Aeronautics and Astronautics




near-term in-flight demonstration (see Figure 2). The  have memory properties, and hence learns rather
all-wing airframe provides many benefits such as  simply adapting.

stealth, low wing-loading, high fuel volume, and greater
aerodynamic efficiency than traditional wing-fuselage
configurations, however it does pose several control
challenges including (a) low yaw authority due to the
airframe configuration (b) a reduced effector set
consisting of midboard and outboard body flaps and
spoilers and (c) effector interactions due to the fact that \\
are mounted directly upstream of the midboard flaps

and cause a significant reduction in midboard flap
control power when deployed. = The BANTAM
simulation used second-order models for actuator
dynamics with rate and position limits representative of
this type of vehicle.

Yo Xe T

Ve
' flight-path Qc,
. angles

Be, e
sero Pc:Gc, Tc
angles

Figure 3: Inner-Loop Architecture

CONTROLLER

Backstepping control takes advantage of the fact that
certain states can be used as virtual controls for other Inputs
states. In effect this results in generating aero-angle Control Food-
commands to meet tracking of flight-path variables, Loop | Com- back Learned
followed by computing required angular rates to follow mands signals parameters
the aero-angle commands from the previous step, and :
finally the control surface deflections required for '
achieving the required angular rates. This is essentially - ' a. B,
. . . Flight | .. %o
the same as constructing three loops, an inner, a middle, path et Y% . M
and an outer corresponding to the rate loop, the aero- Vo Y| v, Y Thrust
angle loop, and the flight path loop respectively, as is Lift, Drag,
commonly done in flight control. The advantage of Side-force
backstepping is that it accounts for the transients in the v
virtual command, and thus does not require an Aero | s B, (u,v,w)
explicitly time-scale separation assumption. A block angle Por Ges Te
; . t e Ko ] (0,8, v)
diagram of the inner-loop control architecture is given
in Figure 3. Table 6 expands upon the inputs and
outputs used for each loop. Details of the IC pitch, roll,
backstepping controller can be found in {17], [18], and f . yaw
[19]. Body | Porde| - pitch, roll, pseudo-
rate pqr yaw controls
LEARNING Te moment 5,,8,,8.)
Nonlinear flight-control algorithms such as feedback-
linearization and backstepping require accurate
knowledge of the plant parameters for successful
implementation, and thus some form of adaptation or
learning is required to provide robustness to uncertain

Table 6: Inner-Loop Input/Output Signals

Outputs

o

B-Splines form the core of the IC function
approximators. Some of the advantages afforded by

or altered aerodynamics. Here, learning is  these splines are:

distinguished from adaptation in that learning e Local support: spliries actually go to zero
algorithms have memory in the sense that they retain outside their domain, so only k? splines are
mformat.lon across multiple flight conditions. ThlS. is non-zero during any given time step. (k =
accomplished _through the use of fu.nctlon spline order; usually, k = 3 is used).
approximators with local support, i.e. the approximator .

parameters are adjusted only locally at any given time. o The spline outputs are always positive and
The local function approximation does not interfere normalized, which provides numerical stability

with the approximation at points outside a closed

neighborhood. Thus, the approximator is considered to o The algorithms for computing the spline

outputs are computationally efficient.

-5-
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e The number of splines, and their sizes and
centers can either be determined a priori (e.g.,
laid out on a grid), or adapted on-line. The

latter is known as structure learning.

l %
0L g S}
1A Ay A A A h, Ay A
Figure 4: Third-Order B-Splines
The function approximators are linear-in-the-

parameters, i.e. the approximated function is expressed
as f = 6" ¢ where

e O isavector of weights

e ¢ is a regressor vector containing the basis

functions. The regressor is predefined by the
designer
Figure 5 shows the structure of the function approx-
imator update.

L C::y = 93.;43(&, M)
.:cy = 7Iyel‘y¢(ar M)

training err. /

ezy

eval. pt.
fo, M)

Figure 5: Function Approximator Operation

In the IC architecture, the structure of the splines used
to model the stability and control derivatives is fixed as
a two-dimensional function of @ and Mach with a
pre-specified number of knots. An exception to this are

the &, fiap C0Ntrol derivatives which are also functions

of &

spoller 1e.

anldﬁq = 0:.uh¢(a’M’ (Sspolier)
One of the advantages of the IC architecture is that
unlike most other direct-adaptive control approaches
which modify a control gain or compensation parameter
directly, the IC function approximators learn the non-
dimensionalized stability and control derivatives for all
of the aerodynamic forces and moments.

-6-

There are three possible signals that can be used to
update the function approximators.

Tracking error — i.e. true direct adaptive
control. This method guarantees bounded
command-tracking, but function convergence
can be very slow.

Function approximation error — i.e. indirect
adaptive control. With this method, function
approximation is  improved, however
command tracking may be quite poor.

Composite error — a blend of direct and
indirect adaptive control. This approach
provides both guarantees on command
tracking as well as improved functional
converges. The ICLAWs use composite error
to train the function approximators.

Input saturation must be considered in any adaptive or
learning control system since the adaptive and learning
elements are essentially integrators that will wind up in
the event of input saturation. The ICLAW employs a
simple solution to remove the effect of saturation from
the leamning function approximators' training error,
thereby preventing wind-up in the case of magnitude,
rate, or bandwidth constraints [20,21].

In many cases, the structure of the underlying
aerodynamic model is known relatively well and so
determining the structure of the spline approximators
ahead of time is not a problem. In some cases,
however, it may be desirable to learn the structure of
the spline approximators as well as the coefficients. To
address this, the IC team developed a composite error
update rule for structure-learning locally-weighted-
linear (LWL) approximators and associated stability
proofs [22,23].

PATH PLANNING

The path planner is tasked with generating feasible
earth-axis (NED) flight paths on-line. For
computational tractability, the planner discretizes the
maneuver space into a grid, with travel between grid
points performed via interpolation. There are two basic
components of the path planner: one that is
computationally intensive and generated offline, and
one that is used on-line to rapidly construct a trajectory
using the stored information.

The off-line component itself consists of a maneuver
automaton, which forms the core of the path planner,
and describes all of the feasible trajectories the aircraft
can take. is the automaton is composed of two libraries,
one containing feasible trims, which are defined as
constant velocity trajectories (including steady-state
turn), and the other containing maneuvers, which are
finite-time transitions between trims. The automaton is

American Institute of Aeronautics and Astronautics




generated using a closed loop simulation of the aircraft,
and therefore accounts for all of the aircraft nonlinear
dynamics.

A value-iteration is performed off-line to determine
costs associated with traveling from any point in the
maneuver-space grid to the origin in a trim (for every
maneuver, the reference grid is defined such that the
goal state or waypoint is considered the origin). On-
line trajectory generation is akin to solving a dynamic
programming problem, and the resulting optimal
trajectory is simply a sequence of trims and maneuvers
stored in the automaton. Furthermore, the trajectory is
guaranteed to be feasible since the maneuver automaton
and the value function are generated using the nonlinear
vehicle dynamics.

Steady left turn

Steady right turn

Figure 6: Maneuver Automaton

The inputs that the planner expects from the mission
planner are

1) Waypoints in (NED) coordinates (x,y,z)
2) Target trims in which to reach
destination. (V, v, %, %)

and the outputs are: (V,Y, %) commands

the

A critical piece in the integration of the path planner
and the inner loop is their interface. During nominal
operating conditions, the path planner simply provides
inner-loop commands. However, in the event of
unanticipated actuator saturation or damage, the closed-
loop capabilities of the airframe and/or its. dynamics
change. This change in dynamics is represented in the
automaton as a set of discrete trims and maneuvers that
are no longer feasible (Figure 7). In this case the
trajectory generation algorithm is no longer “optimal;”
however the finite automaton will still generate and
regenerate feasible trajectories quite rapidly while, in
the background, the costs-to-go associated with each
trim point in the automaton are updated. Figure 8 gives
a summary of the entire reconfiguration process.

-7-

Steady left turn

Steady right turn

Figure 7: Reconfigured Automaton

Figure 8: Inner/Outer Loop Reconfiguration

REPRES.ENT’ATIVE SIMULATION
' RESULTS

At present, the IC control software has been developed,
implemented, evaluated in BANTAM, and is being
ported to the high-fidelity simulation environment.
This section presents some representative results.

To test the inner-loop reconfiguration, the authors drove
it with aggressive command sequences that are
representative of the kinds of commands that are
required for tasks such as missile evasion or NOE
flight. Figure 9 shows the inner-loop response to the
externally-generated flight-path-angle commands. As
shown in Figure 3, the backstepping controller uses
aerodynamic angle commands to track the flight-path
angle commands, angular rate commands to track the
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aerodynamic angle commands, and uses effector
commands to track the angular rate commands. Figure
10 and Figure 11 show commands generated and
tracking achieved by these inner backstepping loops.
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Figure 10: Aerodynamic Angle Tracking

Figure 12 shows the results of the learning on the
baseline pitching moment coefficient. The true
coefficient is approximately linear in angle of attack;
however, the B-Spline function approximators have
been initialized at zero. The shaded region represents
the range of angle-of-attack for the maneuver.

It can be seen that after this brief maneuver, the
baseline moment coefficient has converged in this
region, but has not changed in regions outside the
envelope of the maneuver. This nondestructive,
spatially-local property of the learning enables the IC to
“remember” what it has learned in one flight condition
while being updated in another (in this case, it hasn’t
yet leamed anything about the other flight conditions so
they are held at the nominal/initial values).
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Figure 12: Learned Pitching Moment Coefficient

Figure 13 shows an offset-landing maneuver during a
failure in which the left outboard flap goes hard over
shortly after the initiation of the maneuver (See Figure
14). With a non-reconfigurable controller this failure
results in an immediate departure of the vehicle and an
obvious inability to complete the task; however, it can
be seen that the IC is able to reconfigure and complete
the task with approximately 8 feet of downrange error
and 4 feet of crossrange error. Figure 15 shows the
performance of one of the inner backstepping loops
during this maneuver.
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Figure 15: Aero Angle Tracking During Offset Landing

In all of the examples above, the IC was able to
reconfigure for significant failures and still recover the
nominal dynamics of the vehicle and outer-loop
reconfiguration was not required. Figure 16 shows a
case where trajectory reconfiguration is required. Here
the right spoiler locked at 45 deg. The original offset
landing path requires approximately 7.5 deg./sec. turn
rates to correct for the offset; however, with the
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hardover spoiler, the inner loop is only capable of
achieving 2.5 deg./sec. and the UCAV cannot line up
without going around in a much more gentle turn.
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Figure 16: Offset Landing with Hardover Spoiler

SUMMARY AND CONCLUSIONS

Over the past two years the IC program has achieved
the following:

Backstepping flight control that can adapt
rapidly to sudden changes and yet can learn a
global model of vehicle behavior over time.

Methods for learning the structure of the
underlying aerodynamic model in flight.

Provably-stable learning rules for the adaptive
system with built-in anti-windup algorithms to
allow learning even under actuator and state
constraints.

Rapid path planning that accounts for all of the
underlying nonlinear vehicle dynamics.

These achievements serve as enabling technology that
can provide UCAVs with robustness to unforeseen
failures and autopilots capable of aggressive
maneuvering when required by certain mission
scenarios (weapon delivery, NOE flight, missile
evasion, etc.). The learning control approach also
allows controllers for new or derivative vehicles can to
be developed rapidly in high-fidelity simulations
wherein learning would significantly reduce the need
for manual tuning of the control law. Finally, the
global nature of the learned models as well as the fact
that they make physical sense allow any models
updated in flight to be replicated on other UCAVs as
well as used to update batch simulations.
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